【行业知识】上海煊廷 | 厚膜印刷机应用于陶瓷基板制备技术

时间:2023-09-12 16:13
浏览量:0

 

陶瓷基板用技术不同命名有七大种类,今天详细阐述一下这个七大技术的原理,制备原理、工艺流程、技术特点和具体应用以及发展趋势。

 

陶瓷基板发展的背景
 

 

       第一代半导体以硅 (Si)、锗 (Ge) 材料为代表,主要应用在数据运算领域,奠定了微电子产业基础。第二代半导体以砷化镓 (GaAs)、磷化铟 (InP) 为代表,主要应用于通信领域,用于制作高性能微波、毫米波及发光器件,奠定了信息产业基础。随着技术发展和应用需要的不断延伸,二者的局限性逐渐体现出来,难以满足高频、高温、高功率、高能效、耐恶劣环境以及轻便小型化等使用需求。

 

       以碳化硅 (SiC) 和氮化镓 (GaN) 为代表的第三代半导体材料具有禁带宽度大、临界击穿电压高、热导率高、载流子饱和漂移速度大等特点,其制作的电子器件可在 300°C 甚至更高温度下稳定工作 (又称为功率半导体或高温半导体),是固态光源 (如 LED)、激光器 (LD)、电力电子 (如IGBT)、聚焦光伏 (CPV)、微波射频 (RF) 等器件的“核芯”。

 

       在半导体照明、汽车电子、新一代移动通信 (5G)、新能源与新能源汽车、高速轨道交通、消费类电子等领域具有广阔的应用前景,有望突破传统半导体技术瓶颈,与第一代、第二代半导体技术互补,在光电器件、电力电子、汽车电子、航空航天、深井钻探等领域具有重要应用价值,对节能减排、产业转型升级、催生新经济增长点将发挥重要作用。

 

 

 

       伴随着功率器件 (包括 LED、LD、IGBT、CPV 等) 不断发展,散热成为影响器件性能与可靠性的关键技术。对于电子器件而言,通常温度每升高 10°C,器件有效寿命就降低 30% ~ 50%。因此,选用合适的封装材料与工艺、提高器件散热能力就成为发展功率器件的技术瓶颈。

       以大功率 LED 封装为例,由于输入功率的 70% ~ 80% 转变成为热量 (只有约 20% ~ 30% 转化为光能),且 LED 芯片面积小,器件功率密度很大 (大于 100 W/cm2),因此散热成为大功率 LED 封装必须解决的关键问题。

       如果不能及时将芯片发热导出并消散,大量热量将聚集在 LED 内部,芯片结温将逐步升高,一方面使 LED 性能降低 (如发光效率降低、波长红移等),另一方面将在 LED 器件内部产生热应力,引发一系列可靠性问题 (如使用寿命、色温变化等)。

 

陶瓷基板的七大技术类型

       随着功率器件特别是第三代半导体的崛起与应用,半导体器件逐渐向大功率、小型化、集成化、多功能等方向发展,对封装基板性能也提出了更高要求。

       陶瓷基板 (又称陶瓷电路板) 具有热导率高、耐热性好、热膨胀系数低、机械强度高、绝缘性好、耐腐蚀、抗辐射等特点,在电子器件封装中得到广泛应用。常用陶瓷基片材料 (包括 Al2O3、AlN、Si3N4、BeO、SiC 和 BN 等) 的物理特性,重点对各种陶瓷基板 (包括薄膜陶瓷基板 TFC、厚膜印刷陶瓷基板 TPC、直接键合陶瓷基板 DBC、直接电镀陶瓷基板 DPC、活性金属焊接陶瓷基板AMB、激光活化金属陶瓷基板 LAM 以及各种三维陶瓷基板等) 。

 

陶瓷基板制备技术
 

       

陶瓷基板又称陶瓷电路板,包括陶瓷基片和金属线路层。对于电子封装而言,封装基板起着承上启下,连接内外散热通道的关键作用,同时兼有电互连和机械支撑等功能。陶瓷具有热导率高、耐热性好、机械强度高、热膨胀系数低等优势,是功率半导体器件封装常用的基板材料。根据封装结构和应用要求,陶瓷基板可分为平面陶瓷基板和三维陶瓷基板两大类。

 

 

设备推荐
 

 

陶瓷基板和半导体封装都需要经过陶瓷金属化的一个过程,我司生产的厚膜印刷机就应用在这个过程中,适用范围广泛,如相关的LTCC工艺、HTCC工艺、AMB工艺、TPC工艺等。我司生产的厚膜印刷机性能稳定、涂层印刷一致性高、高效快速,并形成有自主知识产权的产品系列。设备广泛应用于厚膜电路、LTCC滤波器、LTCC传感器、片式电容电阻、叠层电感、陶瓷基板、电子雾化芯、SOFC燃料电池等行业。

 

 

 

该款设备为全自动陶瓷基板印刷机,配套自动对位,自动上下料,智能控制系统,性能优越,产能高效,全自动作业模式。更多详细资料,欢迎随时咨询我们。

 

文章部分内容采编于网络,侵权联系删除!

 

 

COMPANY NEWS